• JP
  • EN
    menu

    Journal Papers

    1. C. Ma, R.B.Sadeghian, R. Negoro, K. Fujimoto, T. Araoka, N. Ishiguro, M. Takasato, R. Yokokawa
      Efficient Proximal Tubule-on-Chip Model from hiPSC-Derived Kidney Organoids for Functional Analysis of Renal Transporters
      iScience, 27, 9, 110760, 2024.

    2. M. Wang, Y. Sasaki, R. Sakagami, T. Minamikawa, M. Tsuda, R. Ueno, S. Deguchi, R. Negoro, K. So, Y. Higuchi, R. Yokokawa, K. Takayama, F. Yamashita
      Perfluoropolyether-Based Gut-Liver-on-a-Chip for the Evaluation of First-Pass Metabolism and Oral Bioavailability of Drugs
      ACS Biomaterials Science & Engineering, 10, 7, 4635–4644, 2024.

    3. A. Tsuchida, T. Kaneko, K. Nishikawa, M. Kawasaki, R. Yokokawa, H. Shintaku*.
      Opto-combinatorial indexing enables high-content transcriptomics by linking cell images and transcriptomes.
      Lab Chip, 24, 2287-2297, 2024.

    4. S. Chuaychob, R. Lyu, M. Tanaka, A. Haginiwa, A. Kitada, T. Nakamura, R. Yokokawa*.
      Mimicking angiogenic microenvironment of alveolar soft-part sarcoma in a microfluidic coculture vasculature chip.
      Proc. Natl. Acad. Sci. U.S.A., 121, 13, e2312472121, 2024.

    5. M. Shaji, A. Tamada, K. Fujimoto, K. Muguruma*, S. L. Karsten*, R. Yokokawa*.
      Deciphering potential vascularization factors of on-chip co-cultured hiPSC-derived cerebral organoid.
      Lab Chip, 24, 680-696, 2024.

    6. K. Fujimoto, Y. Kameda, Y. Nagano, S. Deguchi, T. Yamamoto, R. P. Krol, P. Gee, Y. Matsumura, T. Okamoto, M. Nagao, K. Takayama*, R. Yokokawa*.
      SARS-CoV-2-induced disruption of a vascular bed in a microphysiological system caused by type-I interferon from bronchial organoids.
      Lab Chip, 24, 3863-3879, 2024.

    7. A. Tabuchi, S. Watabe, S. L. Karsten, K. Yabuuchi, Y. Sahara, M. Takasato, K. Fujimoto, R. Yokokawa*.
      Evaluation of Inulin and Albumin Permeability at Glomerular Filtration Barrier Constructed by Co-culture of Vascular Endothelial Cells and Podocytes.
      IEEJ Trans. Sens. Micromach., 143, 9, 306-312, 2023.

    8. R. B. Sadeghian, R. Ueno, R. Takata, A. Kawakami, C. Ma, T. Araoka, M. Takasato, R. Yokokawa*.
      Cells Sorted Off hiPSC-Derived Kidney Organoids Coupled with Immortalized Cells Reliably Model the Proximal Tubule.
      Commun. Biol., 6, 483, 2023.

    9. A. Kitada, M. Shaji, T. Irisa, K. Fujimoto, S. L. Karsten, R. Yokokawa*.
      Evaluating Morphology and Functionality of On-Chip Vascular Network Derived from Human Umbilical Vein Endothelial Cells (HUVECs) during Long-Term Culture
      IEEJ Trans. Sens. Micromach., 143, 5, 82-83, 2023.

    10. M. Tanaka*, S. Chuaychob, M. Homme, Y. Yamazaki, R. Lyu, K. Yamashita, K. Ae, S. Matsumoto, K. Kumegawa, R. Maruyama, W. Qu, Y. Miyagi, R. Yokokawa, T. Nakamura*.
      “ASPSCR1::TFE3 Orchestrates the Angiogenic Program of Alveolar Soft Part Sarcoma”
      Nat. Commun., 14, 1, 1957, 2023.

    11. R. Ueno, M. Kuninori, T. Sumi, R. B. Sadeghian, Y. Takata, A. Iguchi, M. Tsuda, F. Yamashita, K. Ichikawa, R. Yokokawa*.
      “Relationship between Adsorption and Toxicity of Nephrotoxic Drugs in Microphysiological Systems (MPS).”
      Micromachines, 14, 4, 761, 2023.

    12. K. Fujimoto, S. Erickson, M. Nakayama, H. Ihara, K. Sugihara, Y. Nashimoto, K. Nishiyama, T. Miura, R. Yokokawa*.
      “Pericytes and Shear Stress Each Alter the Shape of a Self-Assembled Vascular Network.”
      Lab Chip, 23, 306-317, 2023.

    13. Y. Nashimoto, R. Mukomoto, T. Imaizumi, T. Terai, S. Shishido, K. Ino, R. Yokokawa, T. Miura, K. Onuma, M. Inoue, H. Shiku*.
      “Electrochemical Sensing of Oxygen Metabolism for a Three-Dimensional Cultured Model with Biomimetic Vascular Flow,”
      Biosens. Bioelectron., 219, 114808, 2023.

    14. M. Shaji, A. Kitada, K. Fujimoto, S. L. Karsten, and R. Yokokawa*.
      “Long-Term Effect of Sodium Selenite on the Integrity and Permeability of On-Chip Microvasculature,”
      APL Bioeng., 6, 046105, 2022.

    15. H. Zhou, W. Jung, T. I. Farhana, K. Fujimoto, T. Kim, R. Yokokawa*,
      “Durability of Aligned Microtubules Dependent on Persistence Length Determines Phase Transition and Pattern Formation in Collective Motion,”
      ACS Nano, 16, 9, 14765–14778, 2022.

    16. C. Chantarasrivong, R. Okada,Y. Yamane, X. Yang, Y. Higuchi, M. Konishi, N. Komura, H. Ando, R. Yokokawa, F. Yamashita*,
      “Disposition of E-Selectin-Targeting Liposomes in Tumor Spheroids with a Perfusable Vascular Network,”
      Drug Metab. Pharmacokinet., 100469, 2022.

    17. S. Yuge, K. Nishiyama, Y. Arima, Y. Hanada, E. Oguri-Nakamura, S. Hanada, T. Ishii, Y. Wakayama, U. Hasegawa, K. Tsujita, R. Yokokawa, T. Miura, T. Itoh, K. Tsujita, N. Mochizuki and S. Fukuhara*,
      “Mechanical Loading of Intraluminal Pressure Mediates Wound Angiogenesis by Regulating the TOCA Family of F-BAR Proteins,”
      Nat. Commun., 13, 2594, 2022.

    18. H. Zhou, T. Kaneko, N. Isozaki and R. Yokokawa*,
      “Design of Mechanical and Electrical Properties for Multidirectional Control of Microtubules,”
      Methods Mol. Biol., 2430, 105–119, 2022.

    19. Y. Takata, R. Ueno, R. B. Sadeghian, K. Naganuma, K. Tsuji, K. Fujimoto and R. Yokokawa*,
      “Evaluation of Trans-epithelial Electrical Resistance by Removal and Replenishment of Extracellular Ca2+,”
      IEEJ Trans. Sens. Micromach., 142, 2, 21-28, 2022.

    20. Y. Kameda, S. Chuaychob, M. Tanaka, Y. Liu, R. Okada, K. Fujimoto, T. Nakamura and R. Yokokawa*,
      “Three-Dimensional Tissue Model in Direct Contact with an On-Chip Vascular Bed Enabled by Removable Membranes,”
      Lab Chip, 22, 641-651, 2022.

    21. H. Zhou, N. Isozaki, K. Fujimoto and R. Yokokawa*,
      “Growth rate-dependent flexural rigidity of microtubules influences pattern formation in collective motion,”
      J. Nanobiotechnology, 19, 218, 2021.

    22. A. K. Kopec, R. Yokokawa, N. Khan, I. Horii, J. E. Finley, C. P. Bono, C. Donovan, J. Roy, J. Harney, A. D. Burdick, B. Jessen, S. Lu, M. Collinge, R. Banan Sadeghian, M. Derzi, L. Thomlinson* and J. E. Burkhardt,
      “Microphysiological systems in early stage drug development: Perspectives on current applications and future impact,”
      J. Toxicol. Sci.
      , 46, 99-144, 2021.

    23. S. S. Parimalam, M. N. Abdelmoez, A. Tsuchida, N. Sotta, M. Tanaka, T. Kuromori, T. Fujiwara, M. Y. Hirai, R. Yokokawa, Y. Oguchi and H. Shintaku*,
      “Targeted permeabilization of cell wall and extraction of charged molecules from single cells in intact plant clusters using a focused electric field,”
      Analyst
      , 146, 5, 1604-1611, 2021.

    24. T. Amemiya, N. Hata, M. Mizoguchi, R. Yokokawa, Y. Kawamura, R. Hatae, Y. Sangatsuda, D. Kuga, Y. Fujioka, K. Takigawa, Y. Akagi, K. Yoshimoto, K. Iihara and T. Miura*,
      “Mesenchymal glioblastoma‑induced mature de‑novo vessel formation of vascular endothelial cells in a microfluidic device,”
      Mol. Biol. Rep.
      , 48, 395–403, 2021.

    25. K. Sugihara, Y. Yamaguchi, S. Usui, Y. Nashimoto, S. Hanada, E. Kiyokawa, A. Uemura, R. Yokokawa, K. Nishiyama and T. Miura*,
      “A new perfusion culture method with a self-organized capillary network,”  
      PLoS ONE
      , 15, 10, e0240552, 2020.

    26. R. Mukomoto, Y. Nashimoto, T. Terai, T. Imaizumi, K. Hiramoto, K. Ino, R. Yokokawa, T. Miura and H. Shiku*,
      “Oxygen consumption rate of tumour spheroids during necrotic-like core formation,”
      Analyst
      , 145, 6342-6348 2020.

    27. T. Kaneko, K. Furuta, K. Oiwa, H. Shintaku, H. Kotera, and R. Yokokawa*,
      “Different motilities of microtubules driven by kinesin-1 and kinesin-14 motors patterned on nanopillars,”
      Sci. Adv., 6, 4, eaax7413, 2020.

    28. Y. Nashimoto, R. Okada, S. Hanada, Y. Arima, K. Nishiyama, T. Miura and R. Yokokawa*,
      “Vascularized cancer on a chip: The effect of perfusion on growth and drug delivery of tumor spheroid,”
      Biomaterials, 229, 119547, 2020.

    29. T. I. Farhana, T. Nakagawa, S. Ohara, H. Shintaku, H. Kotera, and R. Yokokawa*,
      “Spatial Patterning of Kinesin-1 and Dynein Motor Proteins in an In Vitro Assay using Aqueous Two-phase Systems (ATPS),”
      Langmuir, 35, 40, 13003-13010, 2019.

    30. J. H. Liu, K. C. Hsia, R. Yokokawa*, Y. W. Lu*,
      “Microtubule Polymerization in Alignment by an On-Chip Temperature Gradient Platform,”
      Sens. Actuators, B., 298, 126813, 2019.
    31. T. Kaneko, S. Ando, K. Furuta, K. Oiwa, H. Shintaku, H. Kotera , R. Yokokawa*,
      “Transport of microtubules according to the number and spacing of kinesin motors on gold nano-pillars,”
      Nanoscale, 11, 9879-9887, 2019.

    32. T. Nakahara*, I. Miyazaki, H. Kotera, R. Yokokawa, K. Minami
      “Characterization of Microtubules Gliding on Surfaces Roughness Structure”
      IEEJ Trans. Sens. Micromach.,
      138, 11, 503-508, 2018.

    33. S. Subramanian Parimalam, Y. Oguchi, M. N. Abdelmoez, A. Tsuchida, Y. Ozaki, R. Yokokawa, H. Kotera, H. Shintaku*,
      “Electrical Lysis and Rna Extraction from Single Cells Fixed by Dithiobis(Succinimidyl Propionate),”
      Anal Chem, 90, 12512-12518, 2018.

    34. M. N. Abdelmoez, K. Iida, Y. Oguchi, H. Nishikii, R. Yokokawa, H. Kotera, S. Uemura, J. G. Santiago, H. Shintaku*,
      “Sinc-Seq: Correlation of Transient Gene Expressions between Nucleus and Cytoplasm Reflects Single-Cell Physiology,”
      Genome Biol, 19, 66, 2018.

    35. K. Fujimoto, Y. Morita, R. IINO, M. Tomishige, H. Shintaku, H. Kotera, R. Yokokawa*,
      “Simultaneous Observation of Kinesin-Driven Microtubule Motility and Binding of Adenosine Triphosphate Using Linear Zero-Mode Waveguides,”
      ACS Nano, 12 (12), 11975-11985, 2018.

    36. E. Sano, C. Mori, Y. Nashimoto, R. Yokokawa, H. Kotera, Y. Torisawa*,
      “Engineering of vascularized 3D cell constructs to model cellular interactions through a vascular network,”
      Biomicrofluidics., 12, 042204, 2018.

    37. Y. Nashimoto, Y. Teraoka, R. Banan Sadeghian, A. Nakamasu, Y. Arima, S. Hanada, H. Kotera, K. Nishiyama, T. Miura, R. Yokokawa*,
      “Perfusable Vascular Network with a Tissue Model in a Microfluidic Device,”
      J. Vis. Exp., 134, e57242, 2018.

    38. Y. Nashimoto, Y. Teraoka, Y. Arima, S. Hanada, A. Nakamasu, H. Kotera, K. Nishiyama, T. Miura, R. Yokokawa*,
      “Engineering a Perfusable Vascular Network in a Microfluidic Device for a Morphological Analysis”
      IEEJ Trans. Sens. Micromach., 138, 7, 275-280, 2018.

    39. N. Isozaki, H. Shintaku, H. Kotera, T. L. Hawkins, J. L. Ross, R. Yokokawa*,
      “Control of molecular shuttles by designing electrical and mechanical properties of microtubules,”
      Sci. Robot., 2, 10, eaan4882, 2017.

    40. D. Sasaki, H. Nakajima, Y. Yamaguchi, R. Yokokawa, S. Ei, T. Miura*,
      “Mathematical Modeling for Meshwork Formation of Endothelial Cells in Fibrin Gels,”
      J. Theor. Biol., 429, 95-104, 2017.

    41. K. Fujimoto, Y. Morita, R. Iino, M. Tomishige, H. Shintaku, H. Kotera, R. Yokokawa*,
      “Design and Fabrication of Linear-shaped Zero Mode Waveguides for Single Molecule Observation of Kinesin and Fluorescent ATP,”
      IEEJ Trans. Sens. Micromach., 137, 6, 159-164, 2017.

    42. M. C. Tarhan*, R. Yokokawa, L. Jalabert, D. Collard, H. Fujita,
      “Pick-and-place Assembly of Single Microtubules,”
      Small, 13, 32, 1701136, 2017.

    43. Y. Nashimoto, T. Hayashi, I. Kunita, A. Nakamasu, Y. Torisawa, M. Nakayama, H. Takigawa-Imamura, H. Kotera, K. Nishiyama, T. Miura, R. Yokokawa*,
      “Integrating Perfusable Vascular Networks with A Three-Dimensional Tissue in A Microfluidic Device,”
      Integr. Biol., 9, 6, 506-518, 2017.

    44. S. Subramaniyan Parimalam, M. C. Tarhan, S. L. Karsten, H. Fujita, H. Shintaku, H. Kotera, R. Yokokawa*,
      “Microtubule density and landing rates as parameters to analyze tau protein in the MT-kinesin “gliding” assay,”
      Sens. Actuators, B, 238, 954–961, 2017.

    45. K. Fujimoto,  H. Shintaku, H. Kotera, R. Yokokawa*,
      “Pneumatically-driven Microfluidic Device for Evaluating Active Transport by Kinesin Motor Protein,”
      IEEJ Trans. Sens. Micromach., 136, 9, 384-389 2016.

    46. S. Subramaniyan Parimalam, M. C. Tarhan, S. L. Karsten, H. Fujita, H. Shintaku, H. Kotera, R. Yokokawa*,
      “On-chip microtubule gliding assay for parallel measurement of tau protein species,”
      Lab Chip, 16, 1691-1697, 2016.

    47. T. Nakahara, H. Shintaku, H. Kotera, R. Yokokawa,
      “Velocity Control of Microtubules with High Spatial Resolution on an Au-coated Surface with an SU-8 Thermal Isolation Layer,”
      Trans. Inst. Electr. Eng. Jpn, 136, 3, 77-82, 2016.

    48. T. Iwasa, Y.-W. Han, R. Hiramatsu, H. Yokota, K. Nakao, R. Yokokawa, T. Ono, Y. Harada,
      “Synergistic effect of ATP for RuvA–RuvB–Holliday junction DNA complex formation,”
      Sci. Rep., 5, 18177, 2015

    49. S.-J. Kim, R. Yokokawa, S. C. Lesher-Perez, S. Takayama,
      “Multiple independent autonomous hydraulic oscillators driven by a common gravity head,”
      Nat. Commun., 6, 7301, 2015

    50. K. Fujimoto, M. Nagai, H. Shintaku, H. Kotera, R. Yokokawa*,
      “Dynamic formation of a microchannel array enables kinesin-driven microtubule transport between separate compartments on a chip,”
      Lab Chip, 15, 2055-2063, 2015.

    51. N. Isozaki, S. Ando, T. Nakahara, H. Shintaku, H. Kotera, E. Meyhofer, R. Yokokawa*,
      “Control of microtubule trajectory within an electric field by altering surface charge density,”
      Sci. Rep., 5, 7669, 2015.

    52. T. Nakahara, J. Ikuta, H. Shintaku, H. Kotera, R. Yokokawa*,
      “In situ velocity control of gliding microtubules with temperature monitoring by fluorescence excitation on a patterned gold thin film,”
      Mater. Res. Express, 1, 045405, 2014.

    53. J. Ikuta, N. K. Kamisetty, H. Shintaku, H. Kotera, T. Kon, R. Yokokawa*,
      “Tug-of-war of microtubule filaments at the boundary of a kinesin- and dynein-patterned surface,”
      Sci. Rep., 4, 5281, 2014.

    54. T. Nakahara, N. Isozaki, S. Ando, N. K. Kamisetty, H. Shintaku, H. Kotera, R. Yokokawa*,
      “Fabrication of a perfusable glass microfluidic channel for microtubule manipulation using an electric field,”
      Trans. Inst. Electr. Eng. Jpn, 134, 64-69, 2014.
    55. N. K. Kamisetty, J. Ikuta, H. Kotera, R. Yokokawa*,
      “Microtubule Motility Powered by Dual Motor Protein System and Their Electrical Docking,”
      Asian J. Chem., 25, S308-S310, 2013.

    56. M. C. Tarhan, Y. Orazov, R. Yokokawa, S. L. Karsten, H. Fujita*,
      “Biosensing MAPs as roadblocks: kinesin-based functional analysis of tau protein isoforms and mutants using suspended microtubules (sMT),”
      Lab Chip, 13, 3217-3224, 2013.

    57. M. C. Tarhan, R. Yokokawa, F. O. Morin, H. Fujita*,
      “Specific Transport of Target Molecules by Motor Proteins in Microfluidic Channels,”
      ChemPhysChem, 14, 1618-1625, 2013.

    58. S.-J. Kim, R. Yokokawa, S. Takayama*,
      “Microfluidic oscillators with widely tunable periods,”
      Lab Chip, 13, 1644-1648, 2013.

    59. M. C. Tarhan, Y. Orazov, R. Yokokawa, S. L. Karsten, H. Fujita*,
      “Suspended microtubules demonstrate high sensitivity and low experimental variability in kinesin bead assay,”
      Analyst, 138, 1653-1656, 2013.

    60. K. Fujimoto, M. Kitamura, M. Yokokawa, I. Kanno, H. Kotera, R. Yokokawa*,
      “Colocalization of Quantum Dots by Reactive Molecules Carried by Motor Proteins on Polarized Microtubule Arrays,”
      ACS Nano, 7, 447455, 2013.

    61. S. Matsushita, I. Kanno, K. Adachi, R. Yokokawa, H. Kotera,
      “Metal-based piezoelectric microelectromechanical systems scanner composed of Pb(Zr, Ti)O3 thin film on titanium substrate,”
      Microsyst. Technol., 18, 765-771, 2012.

    62. K. Tomioka, F. Kurokawa, R. Yokokawa, H. Kotera, K. Adachi, I. Kanno,
      “Composition Dependence of Piezoelectric Properties of Pb(Zr,Ti)O3 Films Prepared by Combinatorial Sputtering,”
      Jpn. J. Appl. Phys., 51, 09LA12, 2012.

    63. F. Kurokawa, R. Yokokawa, H. Kotera, F. Horikiri, K. Shibata, T. Mishima, M. Sato, I. Kanno,
      “Micro Fabrication of Lead-Free (K,Na)NbO3 Piezoelectric Thin Films by Dry Etching,”
      Micro Nano Lett., 7, 1223-1225, 2012.

    64. N. C. H. Le*, D. V. Dao, R. Yokokawa, T. D. Nguyen, J. C. Wells, S. Sugiyama,
      “Highly-sensitive fluorescence detection and imaging with microfabricated total internal reflection (TIR)-based devices,”
      J. Micro-Nano Mech., 7, 45-59, 2012.

    65. R. Yokokawa, Y. Kitazawa, K. Terao, A. Okonogi, I. Kanno, H. Kotera,
      “A perfusable microfluidic device with on-chip total internal reflection fluorescence microscopy (TIRFM) for in situ and real-time monitoring of live cells,”
      Biomedical Microdevices, 14, 791-797, 2012.

    66. S.-J. Kim, D. Lai, J. Y. Park, R. Yokokawa, S. Takayama*,
      “Microfluidic Automation using elastomeric valves and droplets, reducing reliance on external controllers,”
      Small, 8, 2925-2934, 2012.

    67. G. Isobe, I. Kanno, H. Kotera, R. Yokokawa*,
      “Perfusable multi-scale channels fabricated by integration of nanoimprint lithography (NIL) and UV lithography (UVL),”
      Microelectron. Eng., 98, 58-63, 2012.

    68. S.-J. Kim, R. Yokokawa, S. C. Lesher-Pereza, S. Takayama*,
      “Constant flow-driven microfluidic oscillator for different duty cycles,”
      Anal. Chem., 84, 1152-1156, 2011.

    69. Y. Wakasa, I. Kanno*, R. Yokokawa, H. Kotera, K. Shibata, T. Mishima,
      “Piezoelectric properties of microfabricated (K,Na)NbO3 thin films,”
      Sens. Actuators, A, 171, 223-227, 2011.

    70. Y. Imamiya, I. Kanno*, R. Yokokawa, H. Kotera,
      “Multilayer Thin-Film Capacitor Fabricated by Radio-Frequency Magnetron Sputtering,”
      Jpn. J. Appl. Phys., 50, 09NA01, 2011.

    71. R. Yokokawa, Y. Sakai, A. Okonogi, I. Kanno, H. Kotera,
      “Measuring the force of adhesion between multiple kinesins and a microtubule using the fluid force produced by microfluidic flow,”
      Microfluid Nanofluid, 11, 519-527, 2011.

    72. K. Terao*, Y. Kitazawa, R. Yokokawa,
      A. Okonogi, H. Kotera, “Open-Access and Multi-Directional Electroosmotic Flow Chip for Positioning Heterotypic Cells,”
      Lab Chip, 11, 1507-1512, 2011.

    73. K. Akama, I. Kanno*, R. Yokokawa, K. Wasa, H. Kotera,
      “Orientation Dependence of Shear Mode Piezoelectric Properties of Epitaxial Pb(Zrx ,Ti1X)O3 Thin Films,”
      Jpn. J. Appl. Phys., 49, 09MA071-09MA076, 2010.

    74. H. Imai, I. Kanno, R. Yokokawa, K. Wasa, H. Kotera,
      “Orientation Dependence of Transverse Piezoelectric Properties of Epitaxial Batio3 Films,”
      Jpn. J. Appl. Phys., 49, 09MA09-09MA09-5, 2010.

    75. M. C. Tarhan, R. Yokokawa, C. Bottier, D. Collard, H. Fujita*,
      “A Nano-Needle/Microtubule Composite Gliding on a Kinesin-Coated Surface for Target Molecule Transport,”
      Lab Chip, 10, 86-91, 2010.

    76. R. Yokokawa, Y. Manta, M. Namura, Y. Takizawa, N. C. H. Le, S. Sugiyama,
      “Individual evaluation of DEP, EP and AC-EOF effects on DNA molecules in a DNA concentrator,”
      Sens. Actuators, B, 143, 769-775, 2010.

    77. R. Yokokawa*,
      “Polarity orientation of microtubules and its applications with motor proteins,”
      Adv. Nat. Sci.: Nanosci. Nanotechnol., 1, 045002, 2010. (Invited paper)

    78. T. Nakayama, M. Namura, K. V. Tabata, H. Noji, R. Yokokawa*
      “Sequential processing from cell lysis to protein assay on a chip enabling the optimization of an F1-ATPase single molecule assay condition”
      Lab Chip, 10, 3567-3573, 2009.

    79. N. C. H. Le*, D. V. Dao, R. Yokokawa, J. C. Wells, S. Sugiyama
      “A Monolithic Dual-color Total-Internal-Reflection-based Chip for Highly sensitive and High-resolution Dual-fluorescence Imaging”
      IEEE/ASME J. Microelectromech. Syst., 18, 1371-1381, 2009.

    80. N. C. H. Le*, D. V. Dao, R. Yokokawa, J. C. Wells, S. Sugiyama
      “Fabrication of Optically Smooth, Through-wafer Silicon Molds for PDMS Total Internal Reflection-based Devices”
      Microsyst. Technol., 15, 1845-1853, 2009.

    81. C. Bottier*, J. Fattaccioli, M. C. Tarhan, R. Yokokawa, F. O. Morin, B. Kim, D. Collard, H. Fujita,
      “Active transport of oil droplets along oriented microtubules by kinesin molecular motors,”
      Lab Chip, 9, 1694-1700, 2009.

    82. N. C. H. Le*, R. Yokokawa, D. V. Dao, T. D. Nguyen, J. Wells, S. Sugiyama,
      “Versatile Microfluidic Total Internal Reflection (TIR)-based Devices: Application to Microbeads Velocity Measurement and Single Molecule Detection with Upright and Inverted Microscope”
      Lab Chip, 9, 244-250, 2009.
      Also selected for Virtual Journal of Biological Physics Research 17(2), American Institute of Physics (AIP) and the American Physical Society (APS), Jan 15th 2009

    83. R. Yokokawa*, J. Miwa, M. C. Tarhan, H. Fujita, M. Kasahara,
      “DNA molecule manipulation by motor proteins for analysis at the single-molecule level,”
      Anal. Bioanal. Chem., 391, 2735-43, 2008.

    84. R. Yokokawa*, T. Murakami, T. Sugie, T. Kon,
      “Polarity Orientation of Microtubules Utilizing Dynein-Based Gliding Assay,”
      Nanotechnology, 19, 125505, 2008.

    85. T. Nakayama, K. Tabata, H. Noji, R. Yokokawa*,
      “A Cell Lysis and Protein Purification – Single Molecule Assay Devices for Evaluation of Genetically engineered Proteins,” IEEJ-SMAS, 128, No. 4, 167-175, 2008. (in Japanese)

      Also selected for publication in ECJ.
      T. Nakayama, K. V. Tabata, H. Noji, R. Yokokawa*, “A Cell Lysis and Protein Purification-Single Molecule Assay Devices for Evaluation of Genetically Engineered Proteins,” Electronics and Communications in Japan, 92, 20-30, 2009.

      中山鉄矢、田端和仁、野地博行、横川隆司
      「遺伝子組換えタンパク質評価のための細胞破砕デバイスと精製‐1分子アッセイデバイス」
      電気学会E部門誌,128, No. 4, 167-175, 2008.

    86. R. Yokokawa*, S. Tamaoki, T. Sakamoto, A. Murakami, S. Sugiyama,
      “Transcriptome analysis device based on liquid phase detection by fluorescently labeled nucleic acid probes,”
      Biomed. Microdev., 9, 869-875, 2007.

    87. N. C. H. Le*, D. V. Dao, R. Yokokawa, J. Wells, S. Sugiyama,
      “Design, Simulation and Fabrication of a Total Internal Reflection (Tir)-Based Chip for Highly Sensitive Fluorescent Imaging,”
      J. Micromech. Microeng., 17, 1139-1146, 2007.

    88. Y. Taii, K. Kakushima, R. Yokokawa, S. Ono, T. Takahashi, K. Isamoto, C. Chong, H. Fujita, H. Toshiyoshi*,
      “Suppression of Stiction Force by All-Vapor Processes using HF, Ozone, and HMDS for MEMS Devices,”
      IEEJ-SMAS, 127, No. 4, 221-227, 2007. (in Japanese)

      泰井祐輔,角嶋邦之,横川隆司,小野志亜之,高橋琢二,諫本圭史,鄭 昌鎬,藤田博之,年吉 洋,
      「フッ酸,オゾン,HMDSを用いたMEMSデバイスの全気相処理によるスティクション力の低減」
      電気学会E部門誌,127, No. 4, pp221-227, 2007.

    89. R. Yokokawa*, T. Saika, T. Nakayama, H. Fujita, S. Konishi,
      “On-chip syringe pumps for picoliter-scale liquid manipulation,”
      Lab Chip, 6, 1062-1066, 2006.

    90. Y. Yoshida, R. Yokokawa, H. Suzuki, K. Atsuta, H. Fujita, S. Takeuchi*,
      “Biomolecular linear motors confined to move upon micro-patterns on glass,”
      J. Micromech. Microeng., 16, 1550-1554, 2006.

    91. R. Yokokawa*, Y. Yoshida, S. Takeuchi, T. Kon, H. Fujita,
      “Unidirectional transport of a bead on a single microtubule immobilized in a submicrometre channel,”
      Nanotechnology, 17, 289-294, 2006.

    92. R. Yokokawa*, Y. Yoshida, S. Takeuchi, T. Kon, K. Sutoh, H. Fujita,
      “Evaluation of Cryopreserved Microtubules Immobilized in Microfluidic Channels for Bead-Assay-Based Transportation System,”
      Trans. Adv. Packag., 28, 577-583, 2005.

    93. R. Yokokawa*, S. Takeuchi, T. Kon, M. Nishiura, K. Sutoh, *H. Fujita,
      “Unidirectional transport of kinesin-coated beads on microtubules oriented in a microfluidic device,”
      Nano Lett., 4, 2265-2270, 2004.

    94. R. Yokokawa*, S. Takeuchi, H. Fujita,
      “Ultra-smooth glass channels for bioassay with motor proteins,”
      The Analyst, 129, 850-854, 2004.

    95. R. Yokokawa*, S. Takeuchi, T. Kon, M. Nishiura, R. Ohkura, M. Edamatsu, K. Sutoh, H. Fujita,
      “Hybrid Nano Transport System by Biomolecular Linear Motors,”
      J. Microelectromech. Syst., 13, 612-619, 2004.

    96. R. Yokokawa, J. Paik, B. Dunn, N. Kitazawa, H. Kotera, C. J. Kim*,
      “Mechanical properties of aerogel-like thin films used for MEMS,”
      J. Micromech. Microeng., 14, 681-686, 2004.

    97. R. Yokokawa*, S. Takeuchi, T. Kon, R. Ohkura, M. Edamatsu, K. Sutoh, H. Fujita,
      “Hybrid Nano Transfer System by Biomolecular Linear Motors,”
      SEISAN KENKYU, 55, 153-157, 2003. (in Japanese)

      横川 隆司, 竹内 昌治, 昆 隆英, 大倉 玲子, 枝松 正樹, 須藤 和夫, 藤田 博之,
      “生体分子モータを用いたハイブリッドナノ搬送システム,”
      生産研究, 55, 153-157, 2003.